Anion photoelectron spectroscopy and chemical bonding of ThS2- and ThSO

J Chem Phys. 2024 Oct 14;161(14):144309. doi: 10.1063/5.0229157.

Abstract

Anion photoelectron spectra of ThSO- and ThS2- were recorded using the third (355 nm) harmonic of an Nd-YAG laser; these provided the measured vertical detachment energies of each anion. The experiments are supported by extensive coupled cluster calculations on ThSO, ThSO-, ThS2, and ThS2-, as well as the oxygen congeners ThO2 and ThO2-. The ab initio calculations, which included complete basis set extrapolations, spin-orbit effects using four-component coupled cluster, and higher-order correlation contributions through CCSDT(Q), yielded an adiabatic electron affinity for ThO2 that was within 0.02 eV of the previously determined experimental value. The singly occupied molecular orbital (SOMO) in all three anions corresponds primarily to the 7s orbital on Th. Successive substitution of S for each O in ThO2 leads to larger electron affinities and smaller bond angles in the neutral molecules, but larger angles in the anions. As demonstrated by Franck-Condon simulations of the spectra using the CCSD(T) spectroscopic constants, substitution of O by S significantly complicates the resulting detachment spectra due to the lower vibrational frequencies in the sulfur species. Overall the calculated vertical detachment energies are in very good agreement with the experiment. In addition to the adiabatic electron affinities of each species, atomization energies and heats of formation have also been determined via the FPD approach with expected uncertainties of 1-2 kcal/mol.