Physical examination of the knee joint is used to diagnose the type and severity of knee ligament injury; however, these exams are qualitative and subjective. To perform common physical examinations, we developed an arthrometer which quantitatively measures the load-displacement response in anterior-posterior (AP) translation, internal-external rotation (IER) and varus-valgus (VV) rotation. Here we describe safety, reliability, minimum detectable changes (MDCs), and absolute side-to-side differences in twenty young, healthy subjects (ten male, ten female, mean age: 28 ± 6 years). The arthrometer consists of an instrumented mechanical linkage, a force-moment sensor, and software for real-time visualization and recording of the load-displacement responses. During testing, the subject sits reclined in a chair with their knee fixed at 30° of flexion. Two examiners tested both knees of each subject twice to assess reliability via intraclass correlation coefficients (ICC). All subjects completed the test protocol with minimal pain and stated that they would volunteer to be tested again. Each knee required on average five minutes to test. All intra-test reliabilities were excellent (≥0.91). Intra-examiner reliabilities ranged from good to excellent (0.62-0.89), and inter-examiner reliabilities were good to excellent (≥0.72). MDCs for repeat measures were ≤ 4.5 mm, 4.6°, and 2.3° for AP, IER, and VV, respectively. The absolute side-to-side differences for this cohort averaged 3.8 mm in AP, 5.5° in IER, and 2.2° in VV. Our arthrometer was safe, testing was time-efficient, and MDCs in our cohort of healthy subjects support utilization of this device for clinical research.
Keywords: Arthrometer; Knee; Laxity; Linkage; Minimum detectable changes; Reliability; Safety; Side-to-side differences.
Copyright © 2024 Elsevier Ltd. All rights reserved.