Periodontitis suffer from inflammation-induced destruction of periodontal tissues, resulting in the serious loss of alveolar bone. Controlling inflammation and promoting bone regeneration are two crucial aspects for periodontitis-related alveolar bone defect treatment. Herein, we developed a hierarchically structured nanofibrous scaffold with a nano-embossed sheath and a bone morphogenetic protein 2-loaded core to match the periodontitis-specific features that spatiotemporally modulated the osteoimmune environment and promoted periodontal bone regeneration. We investigated the potential of this unique scaffold to treat periodontitis-related alveolar bone defects in vivo and in vitro. The results demonstrated that the hierarchically structured scaffold effectively reduced the inflammatory levels in macrophages and enhanced the osteogenic potential of bone mesenchymal stem cells in an inflammatory microenvironment. Moreover, in vivo experiments revealed that the hierarchically structured scaffold significantly ameliorated inflammation in the periodontium and inhibited alveolar bone resorption. Notably, the hierarchically structured scaffold also exhibited a prolonged effect on promoting alveolar bone regeneration. These findings highlight the significant therapeutic potential of hierarchically structured nanofibrous scaffolds for the treatment of periodontitis, and their promising role in the field of periodontal tissue regeneration. STATEMENT OF SIGNIFICANCE: We present a novel hierarchically structured nanofibrous scaffold of coupling topological and biomolecular signals for precise spatiotemporal modulation of the osteoimmune micro-environment. Specifically, the scaffold was engineered via coaxial electrospinning of the poly(ε-caprolactone) sheath and a BMP-2/polyvinyl alcohol core, followed by surface-directed epitaxial crystallization to generate cyclic nano-lamellar embossment on the sheath. With this unique hierarchical structure, the cyclic nano-lamellar sheath provided a direct nano-topographical cue to alleviate the osteoimmune environment, and the stepwise release of BMP-2 from the core provided a biological cue for bone regeneration. This research underscores the potential of hierarchically structured nanofibrous scaffolds as a promising therapeutic approach for periodontal tissue regeneration and highlights their role in advancing periodontal tissue engineering.
Keywords: Electrospun scaffold; Osteogenesis; Osteoimmune; Periodontitis; Topographical cues.
Copyright © 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.