Design and characterization of β-tricalcium phosphate-based self-passivating coatings on magnesium alloys

J Mater Chem B. 2024 Nov 13;12(44):11477-11490. doi: 10.1039/d4tb01214c.

Abstract

Background: Magnesium alloys degrade rapidly in salt solutions, which limits their use without passivating treatments. AZ31 alloy is particularly promising for implant applications owing to its biodegradability and mechanical properties, necessitating effective corrosion-resistant coatings. Aim: In this study, a self-passivating reactive coating was designed and evaluated for AZ31 magnesium alloy plates using β-tricalcium phosphate (TCP) to enhance corrosion resistance and biocompatibility. Methods: Solutions of TCP, trisodium citrate, magnesium nitrate, hydroxyethyl cellulose (HEC), and sodium chloride were used to dip-coat AZ31 plates. The coated samples were immersed in 3.5 wt% NaCl solution. Phase evolution was analysed using gravimetry, X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The biological response of the coated samples was evaluated through MTT and resazurin assays. Results: The coating formed a stable TCP/HEC layer that gradually dissolved over two weeks, converting the surface to magnesium hydroxide, magnesium oxychloride, and magnesium phosphate phases. The formation of brucite, responsible for passivation in the long term, was observed. The coating effectively prevented excessive magnesium oxychloride formation and stabilised magnesium hydroxide after one week. Biological characterization indicated that the coating on AZ31 is safe on the Saos-2 and L929 cell lines. Conclusion: The TCP-based coating enhances the corrosion resistance of AZ31 alloy in salt solutions, promoting passivating phases and limiting corrosive products, thereby ameliorating biocompatibility issues. This coating demonstrates substantial potential for extending the longevity and functionality of magnesium alloy implants.

MeSH terms

  • Alloys* / chemistry
  • Calcium Phosphates* / chemistry
  • Coated Materials, Biocompatible* / chemistry
  • Coated Materials, Biocompatible* / pharmacology
  • Corrosion
  • Humans
  • Magnesium* / chemistry
  • Materials Testing
  • Mice
  • Surface Properties

Substances

  • Calcium Phosphates
  • Alloys
  • Magnesium
  • beta-tricalcium phosphate
  • Coated Materials, Biocompatible