Chromium a heavy metal present in the effluent of the industries causes accumulation of toxicity in water. Chromium commonly has Cr (III) and Cr (VI), two oxidation states, in which hexavalent form causes more health issues to human, other species and environment. The increased anthropogenic effects, especially tannery industrial effluent contributes the higher percentage of chromium accumulation. Removal of heavy metal can be attributed to many aspects, conventionally the physio-chemical methods which superseded by biological means of remediation. Chromium resistant microbes can be used to remove metal ions of chromium from the effluent, as this can be considered an eco-friendly approach. The microbial accession of nanoparticles synthesis is being focused, due to its accuracy and specificity in results. Mycoremediation grabbed attention as fungal absorbance efficiency and the surface-mechanism of heavy metal ions correlates each other. Current study in-depth indulges the base to core mechanism of mycoremediation of chromium ions from different effluents. Fungal-assisted mechanism of chromium ions have insists to be fewer, which may gain attention by enhancing the methodology of removal of chromium ions. This study focuses on improvement of fungal strain and pave-way, to improvise the study with immobilization technique which renders usage of the adsorbents redundant usage and applications, substantially with the low-cost polymeric material alginate is given more importance for immobilization technique. Alginate apart from low-cost adsorbent, is an excellent support for fungal producing nanoparticles which would provide wide-cast and an extraordinary adsorbent material.
Keywords: Adsorption; Bioremediation; Chromium (Cr); Immobilized nanoparticles; Waste water/effluent.
© 2024 The Authors.