The role of the skin microbiome in resistance and susceptibility of wildlife to fungal pathogens has been examined from a taxonomic perspective but skin microbial function, in the context of fungal infection, has yet to be studied. Our objective was to understand effects of a bat fungal pathogen site infection status and course of invasion on skin microbial function. We sampled seven hibernating colonies of Myotis lucifugus covering three-time points over the course of Pseudogymnoascus destructans (Pd) invasion and white nose syndrome (pre-invasion, epidemic, and established). Our results support three new hypotheses about Pd and skin functional microbiome: (1) there is an important effect of Pd invasion stage, especially at the epidemic stage; (2) disruption by the fungus at the epidemic stage could decrease anti-fungal functions with potential negative effects on the microbiome and bat health; (3) the collection site might have a larger influence on microbiomes at the pre-invasion stage rather than at epidemic and established stages. Future studies with larger sample sizes and using meta-omics approaches will help confirm these hypotheses, and determine the influence of the microbiome on wildlife survival to fungal disease.
Keywords: Myotis lucifugus; Pseudogymnoascus destructans; little brown bats; microbial function assemblage; shotgun metagenomic; skin microbiome; white-nose syndrome.
© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.