Integrating network pharmacology and experimental verification to study the mechanism of Polygonum hydropiper total flavonoids against stress-induced gastric mucosal damage

Heliyon. 2024 Sep 29;10(19):e38629. doi: 10.1016/j.heliyon.2024.e38629. eCollection 2024 Oct 15.

Abstract

Context: Polygonum hydropiper L. (P. hydropiper) has outstanding clinical efficacy in treating both acute and chronic gastroenteritis. However, the definite mechanism remains unclear.

Objective: This study aimed to explore the potential mechanisms of the total flavonoid of P. hydropiper (FPH) in stress-induced gastric mucosal damage (SGMD) rats through a combination of network pharmacology, molecular docking, and animal experiments.

Methods: Network pharmacology and molecular docking were utilized to predict the potential mechanisms of FPH against SGMD. In experimental studies, SGMD rat models were established using water-immersion restraint stress (WIRS). FPH was administered at doses of 140, 70, and 35 mg/kg, with ranitidine serving as a positive control, through gavage once daily for 6 consecutive days after model establishment. Stomach and serum specimens were analyzed using HE staining, Western blotting, qPCR, and ELISA to investigate the protective mechanism of FPH in SGMD.

Results: The network pharmacology analysis identified 16 active ingredients and 183 common targets, with potential pathways including PI3K/Akt, MAPK and Keap1/Nrf2. In vivo experiments demonstrated that FPH intervention alleviated SGMD pathological changes, reduced elevated serum IL-6 and TNF-α levels, and enhanced SOD and GSH activity in rats. Additionally, FPH increased the protein expression of p62, Nrf2, HO-1, PI3K, and p-Akt, along with mRNA levels of Nrf2, p62, and HO-1.

Conclusions: FPH exerts a gastric mucosal protective effect by upregulating antioxidant gene expression through the PI3K/Akt and Keap1/Nrf2 pathways. This study provides an experimental basis for the potential clinical treatment of SGMD with the traditional Chinese medicine P. hydropiper.

Keywords: Antioxidant; Gastric mucosal damage; Molecular docking; Polygonum hydropiper.