The case of the monozygotic (MZ) twin as a suspect demonstrates a practical problem in forensic casework. As the MZ twins are genetically identical, they share the same short tandem repeat (STR) profile. Many studies showed that older MZ twins have significant differences in overall content and genomic distribution of methylation between them. However, studies addressing the investigation of epigenetic MZ triplet differentiation in various forensic reference materials are lacking. Here, one triplet set of Egyptian MZ twins was used as an analog to a forensic case. The genome-wide methylation analysis was performed via the new Human Methylation EPIC BeadChip array. Following normalization methods, potential differentially methylated positions (DMPs) were discovered. This resulted in the detection of 24 potential DMPs in reference-type blood DNA and 11 potential DMPs in reference-type buccal DNA. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to show the associated biological functions. Our findings revealed that the 35 potential DMPs were enriched in 283 significant GO terms. These terms are mainly enriched in the immune system. Overall, this study demonstrates the general feasibility of epigenetic MZ triplet differentiation in the forensic context and highlights that some potential DMPs identified in blood DNA were not informative in buccal DNA. This is due to various reasons, including the tissue specificity of DNA methylation.
Keywords: Buccal cells; DNA Methylation; EPIC array; Forensic epigenetics; Monozygotic triplets; Whole blood.
Copyright © 2024 Elsevier B.V. All rights reserved.