Biomimetic polymeric nanoreactors with photooxidation-initiated therapies and reinvigoration of antigen-dependent and antigen-free immunity

Biomaterials. 2024 Oct 10:314:122884. doi: 10.1016/j.biomaterials.2024.122884. Online ahead of print.

Abstract

Immune cell-mediated anticancer modalities usually suffer from immune cell exhaustion and limited efficacy in solid tumors. Herein, the oxygen-carrying biomimetic nanoreactors (BNR2(O2)) have been developed with photooxidation-driven therapies and antigen-dependent/antigen-free immune reinvigoration against xenograft tumors. The BNR2(O2) composes polymeric nanoreactors camouflaged with cancer cell membranes can efficiently target homotypic tumors. It continuously releases O2 to boost intracellular reactive oxygen species (ROS) to oxide diselenide bonds, which controllably releases seleninic acids and anti-folate Pemetrexed compared to hydrogen peroxide and glutathione incubation. The O2-rich microenvironment sensitizes Pemetrexed and blocks programmed cell-death ligand 1 (PD-L1) to reverse T cell immunosuppression. The ROS and Pemetrexed upregulate pro-apoptosis proteins and inhibit folate-related enzymes, which cause significant apoptosis and immunogenic cell death to stimulate dendritic cell maturation for improved secretion of cytokines, expanding antigen-dependent T cell immunity. Furthermore, by regulating the release of seleninic acids, the checkpoint receptor human leukocyte antigen E of tumor cells can be blocked to reinvigorate antigen-free natural killer cell immunity. This work offers an advanced antitumor strategy by bridging biomimetic nanoreactors and modulation of multiple immune cells.

Keywords: Diselenide bond; Immunity; Membrane camouflage; Nanoreactor; Photooxidation.