Neuropathic pain resulting from spinal cord injury (SCI) is a significant secondary health issue affecting around 60% of individuals with SCI. After SCI, activation of microglia, the immune cells within the central nervous system, leads to neuroinflammation by producing pro-inflammatory cytokines and affects neuropathic pain. This interplay between inflammation and pain contributes to the persistent and intense pain experienced by many individuals with SCI. MicroRNAs (miRs) have been critical regulators of neuroinflammation. Previous research in our laboratory has revealed upregulation levels of circulating miR-19a and miR-19b in individuals with SCI with neuropathic pain compared to those without pain. In this study, we treated primary microglial cultures from mice with miR-19a and miR-19b for 24 h and conducted RNA sequencing analysis. Our results showed that miR-19a and miR-19b up- and downregulate different genes according to the volcano plots and the heatmaps. miR-19a and miR-19b regulate inflammation through distinct signaling pathways. The results showed that miR-19a promotes inflammation via toll-like receptor signaling, TNF signaling, and cytokine-cytokine receptor interactions, while miR-19b increases inflammatory responses through the PI3K-Akt signaling pathway, focal adhesion, and extracellular matrix receptor interactions. The protein-protein interaction (PPI) networks used the STRING database to identify transcription factors associated with genes up- or downregulated by miR-19a and miR-19b. Key transcription factors, such as STAT1, STAT2, and KLF4 for miR-19a, and Nr4a1, Nr4a2, and Nr4a3 for miR-19b, were identified and revealed their roles in regulating neuroinflammation. This study demonstrates that miR-19a and miR-19b modulate diverse patterns of gene expression, regulate inflammation, and induce inflammatory responses in microglia.
Keywords: microRNA-19a-3p; microRNA-19b-3p; microglia; neuroinflammation; spinal cord injury.