Brachytherapy offers a highly conformal and adaptive approach to radiation therapy for various oncologic conditions. This review explores the rationale, applications, technological advances, and future directions of personalized brachytherapy. Integration of advanced imaging techniques, 3D-printed applicators, and artificial intelligence are rapidly enhancing brachytherapy delivery and efficiency, while genomic tests and molecular biomarkers are refining patient and dose selection. Emerging research on combining brachytherapy with immunotherapy offers unique synergistic potential, and technologies such as intensity-modulated and shielded brachytherapy applicators present novel opportunities to further optimize dose distributions. Despite these promising advances, the field faces challenges including a need to train more practitioners and develop new approaches to treating a broader range of malignancies. As personalized medicine evolves, brachytherapy's ability to deliver highly targeted, individualized treatments positions it as a critical component in future cancer care.
Keywords: 3D-printed applicators; artificial intelligence in radiation oncology; brachytherapy–immunotherapy combination; genomic biomarkers; image-guided adaptive radiotherapy; intensity-modulated brachytherapy; personalized brachytherapy; precision oncology; shielded brachytherapy; treatment planning optimization.