Assessing Biofilm at the Bedside: Exploring Reliable Accessible Biofilm Detection Methods

Diagnostics (Basel). 2024 Sep 24;14(19):2116. doi: 10.3390/diagnostics14192116.

Abstract

Introduction: Biofilm is linked through a variety of mechanisms to the pathogenesis of chronic wounds. However, accurate biofilm detection is challenging, demanding highly specialized and technically complex methods rendering it unapplicable for most clinical settings. This study evaluated promising methods of bedside biofilm localization, fluorescence imaging of wound bacterial loads, and biofilm blotting by comparing their performance against validation scanning electron microscopy (SEM).

Methods: In this clinical trial, 40 chronic hard-to-heal wounds underwent the following assessments: (1) clinical signs of biofilm (CSB), (2) biofilm blotting, (3) fluorescence imaging for localizing bacterial loads, wound scraping taken for (4) SEM to confirm matrix encased bacteria (biofilm), and (5) PCR (Polymerase Chain Reaction) and NGS (Next Generation Sequencing) to determine absolute bacterial load and species present. We used a combination of SEM and PCR microbiology to calculate the diagnostic accuracy measures of the CSB, biofilm blotting assay, and fluorescence imaging.

Results: Study data demonstrate that 62.5% of wounds were identified as biofilm-positive based on SEM and microbiological assessment. By employing this method to determine the gold truth, and thus calculate accuracy measures for all methods, fluorescence imaging demonstrated superior sensitivity (84%) and accuracy (63%) compared to CSB (sensitivity 44% and accuracy 43%) and biofilm blotting (sensitivity 24% and accuracy 40%). Biofilm blotting exhibited the highest specificity (64%), albeit with lower sensitivity and accuracy. Using SEM alone as the validation method slightly altered the results, but all trends held constant.

Discussion: This trial provides the first comparative assessment of bedside methods for wound biofilm detection. We report the diagnostic accuracy measures of these more feasibly implementable methods versus laboratory-based SEM. Fluorescence imaging showed the greatest number of true positives (highest sensitivity), which is clinically relevant and provides assurance that no pathogenic bacteria will be missed. It effectively alerted regions of biofilm at the point-of-care with greater accuracy than standard clinical assessment (CSB) or biofilm blotting paper, providing actionable information that will likely translate into enhanced therapeutic approaches and better patient outcomes.

Keywords: bacterial fluorescence; biofilm; biofilm blotting; chronic wounds; hard to heal wounds; wound infection.

Grants and funding