Objectives: Though interstitial lung disease (ILD) contributes to excess morbidity and mortality in rheumatoid arthritis (RA), RA-ILD pathogenesis remains incompletely defined. As intermediate, non-classical and suppressed CD14+ monocytes are expanded in RA-ILD, this study sought to characterize gene expression profiles of circulating monocytes in RA-ILD.
Methods: Peripheral blood mononuclear cells were collected from patients with RA without lung disease (N = 5), RA-ILD (N = 5), idiopathic pulmonary fibrosis (IPF; N = 5), and controls without lung and autoimmune disease (N = 4). RNA was extracted from CD14+ isolated monocytes and subjected to transcriptional analysis of 1365 genes. Gene enrichment and pathway analyses were performed.
Results: Unsupervised clustering grouped patients with RA-ILD together with IPF for myeloid innate genes. For fibrosis genes, patients with RA-ILD clustered independent of comparator groups. There were 103, 66, and 64 upregulated and 66, 14, and 25 downregulated genes for RA-ILD, RA, and IPF, vs controls, respectively. For RA-ILD, there was increased expression of genes involved in regulating inflammation and fibrosis (SOCS3, CECAM1, LTB4R2, CLEC7A, IRF7, PHYKPL, GBP5, RAPGEF), epigenetic modification (KDM5D, KMT2D, OGT), and macrophage activation. Top canonical pathways included macrophage differentiation-activation, IL-12, neuroinflammatory, glucocorticoid receptor, and IL-27 signalling.
Conclusions: Circulating monocytes in RA-ILD patients demonstrate unique gene expression profiles with innate immune gene features more aligned with IPF as opposed to RA in the absence of clinical lung disease with fibrosis gene expression that was distinct from RA and IPF. These studies are important for understanding disease pathogenesis and may provide information for future therapeutic targets in RA-ILD.
Keywords: blood; circulating; gene; interstitial lung disease; monocyte; pathway; rheumatoid arthritis.
© The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For permissions, please email: [email protected].