This paper presents a 9-mW ultrasonic through-transmission transceiver (TRX) for portable, non-invasive intracranial pressure (ICP) sensing. It employs two ultrasound transducers placed at the temporal bone windows to measure changes in the ultrasonic time-of-flight (ToF), based on which the skull expansion and the corresponding ICP waveform are derived. Key components include a high-efficiency Class-DE power amplifier (PA) with 95% efficiency and an output swing of 15.8 VPP, along with a successive approximation register (SAR) delay-locked loop (DLL)-based time-to-digital converter (TDC) with 29.8 ps resolution and 122 ns range. Other than electrical characterization, the sensor is validated through two demonstrations using a water tank setup and a human head phantom setup, respectively. It demonstrates a high correlation of R2 = 0.93 with a medical-grade invasive ICP sensor. The proposed system offers high accuracy, low power consumption, and reliable performance, making it a promising solution for real-time, portable, non-invasive ICP monitoring in various clinical settings.