Evaluation of a mixture of livestock wastewater and food waste as a substrate in a continuous-flow microbial electrolysis cell

Sci Total Environ. 2024 Oct 14:955:176884. doi: 10.1016/j.scitotenv.2024.176884. Online ahead of print.

Abstract

While the efficiency of microbial electrolysis cell (MEC) systems has improved remarkably, their application in continuous reactors and wastewater treatment remains poorly understood. This study evaluated the performance of a continuous-flow MEC using livestock wastewater and food waste as substrates. The MEC system achieved a hydrogen production rate of 5.2 L/L/day using acetate as a substrate, and a rate of 2.9-4.6 L/L/day when real wastewater mixtures were used. In terms of chemical oxygen demand (COD) removal, the system demonstrated high efficiency, with values ranging from 42.3 % to 62.2 % depending on the wastewater composition. Volatile fatty acid (VFA) removal reached up to 72.8 %. The current density averaged 9.9 A/m2 with acetate and decreased to 7.0 and 6.1 A/m2 in phases using wastewater, reflecting the adaptation of the microbial community to the more complex substrates. The microbial community was dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes, with Proteobacteria showing a particularly high abundance near the anion exchange membrane (AEM) on the anode. The MEC process demonstrates substantial promise as a sustainable technology for both biohydrogen production and wastewater treatment. With further optimization and scaling, MECs could play a crucial role in the circular economy by converting waste into clean energy while simultaneously treating wastewater, offering a pathway toward more sustainable industrial and environmental practices.

Keywords: Hydrogen; Microbial community; Microbial electrochemical system; Organic removal; Organic waste.