An ancient competition for the conserved branchpoint sequence influences physiological and evolutionary outcomes in splicing

bioRxiv [Preprint]. 2024 Oct 9:2024.10.09.617384. doi: 10.1101/2024.10.09.617384.

Abstract

Recognition of the intron branchpoint during spliceosome assembly is a multistep process that defines both mRNA structure and amount. A branchpoint sequence motif UACUAAC is variably conserved in eukaryotic genomes, but in some organisms more than one protein can recognize it. Here we show that SF1 and Quaking (QKI) compete for a subset of intron branchpoints with the sequence ACUAA. SF1 activates exon inclusion through this sequence, but QKI represses the inclusion of alternatively spliced exons with this intron branchpoint sequence. Using mutant reporters derived from a natural intron with two branchpoint-like sequences, we find that when either branchpoint sequence is mutated, the other is used as a branchpoint, but when both are present, neither is used due to high affinity binding and strong splicing repression by QKI. QKI occupancy at the dual branchpoint site directly prevents SF1 binding and subsequent recruitment of spliceosome-associated factors. Finally, the ectopic expression of QKI in budding yeast (which lacks QKI) is lethal, due at least in part to widespread splicing repression. In conclusion, QKI can function as a splicing repressor by directly competing with SF1/BBP for a subset of branchpoint sequences that closely mirror its high affinity binding site. This suggests that QKI and degenerate branchpoint sequences may have co-evolved as a means through which specific gene expression patterns could be maintained in QKI-expressing or non-expressing cells in metazoans, plants, and animals.

Keywords: Quaking; RNA binding protein; Splicing Factor 1 (SF1); alternative splicing; branchpoint; splicing.

Publication types

  • Preprint