Aims: Cupriavidus isolates are found in environmental and clinical samples and are often resistant to carbapenems, which are last-resort antibiotics. However, their carbapenem-resistance molecular mechanisms remain unknown. This study aimed to (i) characterize and sequence the carbapenem-resistant soil isolate Cupriavidus taiwanensis S2-1-W to uncover its antibiotic resistance determinants; and (ii) clone and characterize a putative novel carbapenemase gene identified in this isolate.
Methods and results: Antibiotic susceptibility testing of C. taiwanensis S2-1-W revealed that it was resistant to most carbapenems, other β-lactams, and aminoglycosides tested. Genome sequencing of this isolate revealed a complex chromosomal resistome that included multidrug efflux pump genes, one aminoglycoside transferase gene, and three β-lactamase genes. Among them, we identified a novel putative class D β-lactamase gene (blaOXA-1206) that is highly conserved among other sequenced C. taiwanensis isolates. Cloning and characterization of blaOXA-1206 confirmed that it encodes for a newly discovered carbapenemase (OXA-1206) that confers resistance to carbapenems and other β-lactams.
Conclusion: Carbapenem-resistance in C. taiwanensis S2-1-W is associated with a newly discovered carbapenemase, OXA-1206.
Keywords: Cupriavidus taiwanensis; antibiotic resistance; carbapenemase; carbapenems; soil; β-lactamase.
© The Author(s) 2024. Published by Oxford University Press on behalf of Applied Microbiology International.