Selective Detection of Divalent Cations (Cu2+, Zn2+, Pb2+) and Anions (SO42-, S2-, CO32-) Using a pH-Sensitive Multi-functional Schiff Base in Neutral Medium

J Fluoresc. 2024 Oct 18. doi: 10.1007/s10895-024-03958-5. Online ahead of print.

Abstract

A new Schiff base-based multi-cation/anion probe (L) has been synthesized and characterized using HR-MS, FT-IR, 1H, and 13C NMR techniques. The Schiff base motif provides specific binding sites that detect cations and anions by generating distinct optical output signals upon interaction. A noticeable color change of the probe solution was observed from pale yellow to various shades of yellow upon adding cations such as Cu2+, Zn2+, and Pb2+ and anions such as CO32⁻, S2⁻, and SO42⁻. This color change results from forming complexes like M3L2 with metal ions. Whereas origin of color in presence of anion were attributed due to the deprotonation of acidic proton in the ligand. Moreover, the complexes formed by Zn2+, S2/CO32⁻ ion with L are fluorescent, enabling the detection of Cu2+ and SO42⁻ using the Stern-Volmer plot, with a limit of detection (LODs) of 8.48 µM and 10.47 µM, respectively. Additionally, increasing the pH of the probe solution above 8 reveals a significant enhancement of fluorescence intensity due to the deprotonation of phenolic -OH and amide -NH in the presence of hydroxide ions. This emission in the basic medium is quenched by Cu2+ ions and restored when Cu2+ is complexed with EDTA. A logic gate has also been constructed for understanding the TURN-OFF-TURN-ON mechanism involving Cu2+ ions and EDTA. Overall, the versatile performance of a single probe L opens up new possibilities as a multifunctional sensor, making it highly suitable for practical applications.

Keywords: Analyte sensing; Fluorescent probe; Logic gate; Selective binding.