Arc magmas have higher water contents (2-6 wt.% H2O) than magmas generated in other tectonic environments, with a growing body of evidence suggesting that some deep arc magmas may be 'super-wet' (>6 wt.% H2O). Here, we use thermodynamic modelling to show that the behaviour of zirconium during magmatic differentiation is strongly sensitive to melt water contents. We demonstrate that super-wet magmas crystallise zircon with low, homogeneous titanium concentrations (75th percentile <10 ppm) due to a decrease in zircon saturation temperatures with increasing melt H2O. We find that zircon titanium concentrations record a transition to super-wet magmatism in Central Chile immediately before the formation of the world's largest porphyry copper deposit cluster at Río Blanco-Los Bronces. Broader analysis shows that low, homogeneous zircon titanium concentrations are present in many magmatic systems. Our study suggests that super-wet magmas are more common than previously envisaged and are fundamental to porphyry copper deposit mineralisation.
© 2024. The Author(s).