This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.
Keywords: Aggressive behavior; Fish; Heat stress; Oxidative stress; Zinc oxide nanoparticles.
© 2024. The Author(s).