A single-atom manganese nanozyme mediated membrane reactor for water decontamination

Water Res. 2024 Oct 13;268(Pt A):122627. doi: 10.1016/j.watres.2024.122627. Online ahead of print.

Abstract

Single-atom nanozymes possess high catalytic activity and selectivity, and are emerging as advanced heterogeneous catalysts for environmental applications. Herein, we present the innovative synthesis and characterization of a single-atom manganese-doped carbon nitride (SA-Mn-CN) nanozyme, integrated into a polyvinylidene fluoride (PVDF) membrane for advanced water treatment applications. The SA-Mn-CN nanozyme demonstrates high peroxidase-like activity, efficiently catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and generating reactive oxygen species (ROS) for effective antibacterial action. Notably, the SA-Mn-CN/PVDF membrane showcases enhanced water permeability, superior antifouling properties, and ultra-fast degradation kinetics of organic pollutants. Mechanistic studies reveal that the nanozyme selectively generates Mn(IV)-oxo species via peroxymonosulfate (PMS) activation, crucial for the efficient oxidation processes. Our integrated membrane system effectively removes (within 1 min, > 92 % removal) a variety of organic micropollutants in continuous-flow operations, demonstrating excellent stability and minimal manganese leaching. Compared to conventional advanced oxidation process (AOPs)/membrane system, the SA-Mn-CN/PVDF/PMS system holds the advantages of high catalytic activity and selectivity for generation of reactive species, wide working pH range (pH3-11) and excellent stability and reusability under the backwashing conditions. The developed device-scale AOPs/membrane system was proven to be effective in bacterial inactivation and pollutants degradation, verifying the vast application potential of the SA-Mn-CN/PVDF membrane for practical water decontamination. This work pioneers the development of enzyme-mimicking nanozyme membranes, offering a sustainable and high-performance solution for wastewater treatment, and sets a new benchmark for the design of nanozyme-based catalytic membranes in environmental applications.

Keywords: Fenton-like; High-valent manganese; Membrane reactor; Single-atom nanozyme.