Aim: We sought the cardiopulmonary exercise testing (CPET) parameter that most accurately reflected therapeutic efficacy in patients with hypertrophic cardiomyopathy (HCM).
Methods: Well-being questionnaire, N-terminal brain natriuretic peptide measurements, echocardiography, and CPET were performed in patients with symptomatic non-obstructive HCM during phase II, randomized, open-label multicentre study, before and after 16 weeks of traditional or sacubitril/valsartan treatment. Patients were followed 36 months after the initial CPET. Primary endpoints were changes in: 1) peak oxygen consumption (VO2); 2) VO2 at anaerobic threshold (AT); 3) oxygen pulse; 4) minute ventilation (VE)/carbon-dioxide (CO2) production slope; 5) VE/VCO2 at AT (VE/VCO2_AT); 6) VE/VCO2 nadir; 7) VE/VCO2 intercept; and 8) partial end-tidal pressure of carbon-dioxide (PETCO2) change during CPET.
Results: Of 115 screened patients, 61 (52 ± 14 years, 43 % women) were included. Within subject therapy effects were detected only by the VE/VCO2 intercept and PETCO2 change, whereas the differences between medical regimens were detected by differences in VE/VCO2 nadir and VE/VCO2_AT changes after the treatment. The best predictors of the change in well-being were left ventricular outflow tract maximal gradient and VE/VCO2 intercept (B = 0.41,0.36; SE = 0.16,0.30; CI = 0.14-0.79, 0.15-1.14; p = 0.006,0.016, respectively). Adverse cardiac events were best predicted by the initial VE/VCO2 nadir.
Conclusion: Ventilatory efficiency parameters outperform peak VO2 in gauging therapy effects in patients with HCM.
Keywords: Cardiopulmonary exercise testing; Hypertrophic cardiomyopathy; Therapy effects; VE/VCO(2) intercept; VE/VCO(2) nadir; Ventilatory efficiency.
Copyright © 2024 Elsevier Inc. All rights reserved.