Farnesyl pyrophosphate potentiates dendritic cell migration in autoimmunity through mitochondrial remodelling

Nat Metab. 2024 Oct 18. doi: 10.1038/s42255-024-01149-x. Online ahead of print.

Abstract

Cellular metabolism modulates dendritic cell (DC) maturation and activation. Migratory dendritic cells (mig-DCs) travelling from the tissues to draining lymph nodes (dLNs) are critical for instructing adaptive immune responses. However, how lipid metabolites influence mig-DCs in autoimmunity remains elusive. Here, we demonstrate that farnesyl pyrophosphate (FPP), an intermediate of the mevalonate pathway, accumulates in mig-DCs derived from mice with systemic lupus erythematosus (SLE). FPP promotes mig-DC survival and germinal centre responses in the dLNs by coordinating protein geranylgeranylation and mitochondrial remodelling. Mechanistically, FPP-dependent RhoA geranylgeranylation promotes mitochondrial fusion and oxidative respiration through mitochondrial RhoA-MFN interaction, which subsequently facilitates the resolution of endoplasmic reticulum stress in mig-DCs. Simvastatin, a chemical inhibitor of the mevalonate pathway, restores mitochondrial function in mig-DCs and ameliorates systemic pathogenesis in SLE mice. Our study reveals a critical role for FPP in dictating mig-DC survival by reprogramming mitochondrial structure and metabolism, providing new insights into the pathogenesis of DC-dependent autoimmune diseases.