Methodologies underpinning polygenic risk scores estimation: a comprehensive overview

Hum Genet. 2024 Nov;143(11):1265-1280. doi: 10.1007/s00439-024-02710-0. Epub 2024 Oct 19.

Abstract

Polygenic risk scores (PRS) have emerged as a promising tool for predicting disease risk and treatment outcomes using genomic data. Thousands of genome-wide association studies (GWAS), primarily involving populations of European ancestry, have supported the development of PRS models. However, these models have not been adequately evaluated in non-European populations, raising concerns about their clinical validity and predictive power across diverse groups. Addressing this issue requires developing novel risk prediction frameworks that leverage genetic characteristics across diverse populations, considering host-microbiome interactions and a broad range of health measures. One of the key aspects in evaluating PRS is understanding the strengths and limitations of various methods for constructing them. In this review, we analyze strengths and limitations of different methods for constructing PRS, including traditional weighted approaches and new methods such as Bayesian and Frequentist penalized regression approaches. Finally, we summarize recent advances in PRS calculation methods development, and highlight key areas for future research, including development of models robust across diverse populations by underlining the complex interplay between genetic variants across diverse ancestral backgrounds in disease risk as well as treatment response prediction. PRS hold great promise for improving disease risk prediction and personalized medicine; therefore, their implementation must be guided by careful consideration of their limitations, biases, and ethical implications to ensure that they are used in a fair, equitable, and responsible manner.

Publication types

  • Review

MeSH terms

  • Bayes Theorem
  • Genetic Predisposition to Disease*
  • Genetic Risk Score
  • Genome-Wide Association Study* / methods
  • Humans
  • Multifactorial Inheritance* / genetics
  • Polymorphism, Single Nucleotide
  • Risk Factors