A portable optical sensor combining smartphone with phycocyanin-based fluorescent test paper for rapid, visual and on-site detection of CO32

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Oct 11:326:125276. doi: 10.1016/j.saa.2024.125276. Online ahead of print.

Abstract

With the development of global industry, carbon dioxide emissions surged. The conversion of carbon dioxide from the air results in some CO32-, which can exacerbate environmental disasters like ocean acidification. Therefore, the content of CO32- in seawater is an important indicator of the degree of ocean acidification. In this study, natural fluorescent protein phycocyanin (PC) was used as a fluorescent probe, and a fluorescence detection method was established for quantitative monitoring of CO32- with quick response time (within 50 s), high sensitivity, and selectivity. The fluorescence quenching phenomenon between PC and CO32- was mainly attributed to static quenching. The limit of detection (LOD) was 0.42 μM and the method was successfully applied to monitor CO32- in tap water and seawater, acquiring satisfactory recovery between 99.28 % and 106.40 %. More importantly, paper-based test strips were easily fabricated using PC, enabling the rapid, visual, and on-site detection of CO32- with the aid of a smartphone. The visual detection integrated with the smartphone was converted to data information (RGB value) through a Color Picker APP and successfully used for quantitative identification of CO32-. By capturing fluorescent images and analyzing the corresponding RGB value via a smartphone, the linear calibration ranged from 0.5 μM to 500.0 μM with LOD of 0.11 μM was obtained. Satisfactory recoveries were acquired in tap water (98.00 %-107.50 %) and seawater (97.30 %-101.74 %), respectively. Therefore, integrating the PC fluorescent paper with a smartphone realizes the rapid, visual, and on-site detection of CO32- in the water environment, which is expected to broaden application prospects of monitoring ocean acidification degree.

Keywords: CO(3)(2); Fluorescent test paper; On-site analysis; Phycocyanin; Smartphone; Visual quantitative monitoring.