Case report: dynamic personalized physiological monitoring in lung cancer using wearable data

Front Oncol. 2024 Oct 4:14:1420888. doi: 10.3389/fonc.2024.1420888. eCollection 2024.

Abstract

Pretreatment prognostication, on-treatment monitoring, and early detection of physiological symptoms are considerable challenges in cancer. We describe the feasibility of high-resolution wearable data (steps per day, walking speed) to longitudinally profile physiological trajectories extracted from Apple Health data in three patients with lung cancer from diagnosis through cancer treatment after obtaining informed consent. We used descriptive statistics to describe our approach of building longitudinal physiological profiles. The wearable data monitoring period ranged from 58 to 135 weeks, with between 34,319 and 103,535 distinct digital physiological measures collected during this period-the equivalent to 41 measures per day/patient. Longitudinal profiling revealed that wearable data accurately captured physiological changes linked with clinical events such as surgery and hospitalizations as well as initiation (and cessation) of systemic cancer treatment in all three patients. These findings suggest that wearable devices could play a critical role in the management of lung cancer, although larger studies are needed to confirm these preliminary observations and validate their generalizability. Wearable devices hold significant promise for the development of personalized "digital biomarkers," which may enhance risk stratification and management in oncology.

Keywords: cancer; exercise; functional status; lung cancer; physiologic monitoring; prevention; wearable sensors.

Publication types

  • Case Reports