The genetic code expansion technique is a powerful chemical biology tool to install noncanonical amino acids (ncAAs) in proteins. As a key enzyme for this technique, pyrrolysyl-tRNA synthetase (PylRS), coupled with its cognate amber suppressor tRNAPyl, has been engineered for the genetic incorporation of more than 200 ncAAs. Using PylRS clones from different archaeal origins, two ncAAs have also been genetically encoded in one protein. In this work, we show that the C41AU mutant of tRNAPyl from Candidatus Methanomethylophilus alvus (CmatRNAPyl) is catalytically inert toward PylRS from Methanosarcina mazei (MmPylRS) but has weak activity toward PylRS from Ca. M. alvus (CmaPylRS). To improve the catalytic efficiency of CmaPylRS toward CmatRNAPyl-C41AU, we conducted a directed evolution of CMaPylRS by randomizing its coding sequence, followed by the screening of active mutant clones. After three rounds of randomization and screening, we identified 4 mutations, Y16F/N57D/E161G/N182I, that improve the catalytic efficiency of CMaPylRS toward CMatRNAPyl-C41AU. This new clone, named R3-14, coupling with CmatRNAPyl-C41AU to recognize an amber codon, has been successfully used together with an evolved MmPylRS clone, coupling with a mutant M. mazei tRNAPyl to recognize an ochre codon, to genetically incorporate two different ncAAs, N ε-(t-butoxycarbonyl)-lysine and N ε-acetyl-lysine, into one model protein.
© 2024 The Authors. Published by American Chemical Society.