Integrating network pharmacology and experimental verification to explore the pharmacological mechanisms of Guanxin Shutong capsule in treating heart failure

Medicine (Baltimore). 2024 Oct 18;103(42):e40118. doi: 10.1097/MD.0000000000040118.

Abstract

The Guanxin Shutong capsule (GXST), a traditional Chinese medicine, is commonly used for treating cardiovascular disease, it has shown efficacy in improving symptoms and enhancing the quality of life for patients with heart failure (HF). However, the specific mechanism of action of GXST in HF remains unclear. In this study, we employed a comprehensive approach combining network pharmacology, molecular dynamics (MD) simulations, and in vitro validations to investigate the potential targets and molecular mechanisms of GXST against HF. We collected active ingredients and target genes of GXST, as well as related genes of HF, from multiple public databases. Using bioinformatics analysis, we constructed networks of ingredients-disease-targets and performed functional annotations of the core targets. MD simulations were conducted to verify the binding between the core protein-ligand complexes. In vitro evaluations, including cell proliferation, apoptosis, and protein expression in human umbilical vein endothelial cells (HUVECs) and H9C2 cells were treated with GXST, were performed for pharmacodynamics evaluation. Network analysis revealed 320 intersection genes and 74 active ingredients in the Herbs-ingredients-target genes-disease network. We identified key active ingredients and target genes that overlapped. The KEGG pathways of the intersection genes were primarily enriched in the PI3K-Akt signaling pathway and apoptosis. The protein-protein interaction network highlighted proteins such as AKT1, VEGFR2, and eNOS. MD simulations confirmed stable docking and lower binding energy between 4 identified ingredients (kaempferol, quercetin, (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl) chroman-4-one, and ellagic acid) and their respective core proteins (VEGFR2, eNOS, and AKT). In vitro experiments demonstrated the protective effects of GXST against H2O2-induced apoptosis in both HUVECs and H9C2 cells. Notably, consistent with the in silico predictions, GXST effectively activates the VEGFR2/AKT/eNOS signaling pathways in HUVECs. This study provides insights into the underlying mechanism of GXST's therapeutic effects in heart failure. The involvement of the VEGFR2/AKT/eNOS signaling pathways suggests their importance in further elucidating and applying GXST in the clinical treatment of heart failure.

MeSH terms

  • Animals
  • Apoptosis* / drug effects
  • Cell Proliferation / drug effects
  • Drugs, Chinese Herbal* / pharmacology
  • Drugs, Chinese Herbal* / therapeutic use
  • Heart Failure* / drug therapy
  • Heart Failure* / metabolism
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Humans
  • Molecular Dynamics Simulation
  • Network Pharmacology*
  • Rats
  • Signal Transduction / drug effects

Substances

  • Drugs, Chinese Herbal