Background: Altered metabolism plays a role in the pathophysiology of cardiac diseases, such as atrial fibrillation (AF) and heart failure (HF). We aimed to identify novel plasma metabolites and proteins associating with cardiac disease.
Methods: Mendelian randomisation (MR) was used to assess the association of 174 metabolites measured in up to 86,507 participants with AF, HF, dilated cardiomyopathy (DCM), and non-ischemic cardiomyopathy (NICM). Subsequently, we sourced data on 1567 plasma proteins and performed cis MR to identify proteins affecting the identified metabolites as well as the cardiac diseases. Proteins were prioritised on cardiac expression and druggability, and mapped to biological pathways.
Results: We identified 35 metabolites associating with cardiac disease. AF was affected by seventeen metabolites, HF by nineteen, DCM by four, and NCIM by taurine. HF was particularly enriched for phosphatidylcholines (p = 0.029) and DCM for acylcarnitines (p = 0.001). Metabolite involvement with AF was more uniform, spanning for example phosphatidylcholines, amino acids, and acylcarnitines. We identified 38 druggable proteins expressed in cardiac tissue, with a directionally concordant effect on metabolites and cardiac disease. We recapitulated known associations, for example between the drug target of digoxin (AT1B2), taurine and NICM risk. Additionally, we identified numerous novel findings, such as higher RET values associating with phosphatidylcholines and decreasing AF and HF. RET is targeted by drugs such as regorafenib which has known cardiotoxic side-effects. Pathway analysis implicated involvement of GDF15 signalling through RET, and ghrelin regulation of energy homeostasis in cardiac pathogenesis.
Conclusions: This study identified 35 plasma metabolites involved with cardiac diseases and linked these to 38 druggable proteins, providing actionable leads for drug development.
Keywords: Atrial fibrillation; Cardiomyopathy; Drug development; Heart failure; Mendelian randomisation; Metabolomics; Proteomics.
© 2024. The Author(s).