The rising demand for fresh and safe food is driving advancements in preservation technologies, with nanoparticles offering a revolutionary solution. These particles extend shelf life, preserve nutritional value, and enhance food safety, aligning with present consumer expectations. This study explores the eco-friendly synthesis, characterization, and application of silk sericin-based silver nanoparticles (SS-AgNPs) for antibacterial and food coating purposes. Silk sericin, a byproduct of the silk industry, is typically discarded despite its valuable properties like biocompatibility, biodegradability, and antimicrobial activity. In this research, sericin from Bombyx mori cocoons was used as a reducing and stabilizing agent to synthesize SS-AgNPs. Characterization was performed using UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and dynamic light scattering (DLS). Antibacterial tests confirmed the efficacy of SS-AgNPs against Pseudomonas sp. and Staphylococcus sp., while food coating trials on tomatoes significantly reduced weight loss and microbial contamination. Biocompatibility was further verified through hemolysis and MTT assays, confirming SS-AgNPs' safety for biomedical and food-related uses. This study underscores the potential to convert sericin waste into a valuable resource, promoting sustainability and increasing the commercial value of sericulture.
This journal is © The Royal Society of Chemistry.