Microneedle technologies have emerged as a promising transdermal drug delivery platform for postoperative tumor therapy. Despite their potential, enhancing intracellular drug delivery to tumor cells and boosting the therapeutic efficiency of microneedles pose significant challenges. Herein, we develop a nanomedicine-loaded microneedle to enhance the induction of ferroptosis and immunogenic cell death for postoperative tumor therapy. This advancement is achieved by pre-formulating small molecule drugs with transition metal and protein templates into nanomedicine. Upon insertion into the tumors, the microneedle rapidly dissolves, facilitating the release and subsequent cellular uptake of the nanomedicine by tumor cells. Notably, the nanomedicine can release Mn ions and ferroptosis-inducer sulfasalazine (SAS) under acidic conditions. Furthermore, the released Mn ions can produce reactive oxygen species, which decrease the levels of glutathione (GSH) and glutathione peroxidase 4 (GPX4) with increased lipid peroxidation and enhanced induction of ferroptosis. Besides, the treatment stimulates immunogenic cell death through the cell surface exposure of calreticulin (CRT) and release of high-mobility group box 1 (HMGB1), which further stimulates dendric cell maturation, T cell infiltration, and macrophage polarization towards the M1 phenotype. Consequently, this strategy significantly inhibits postoperative tumor regrowth and extends overall survival. Our study indicates the potential of the combination of nanomedicine and microneedle to improve postoperative therapeutic efficiency.
Keywords: Ferroptosis; Immunogenic cell death; Immunotherapy; Microneedles; Nanomedicine.
Copyright © 2024 Elsevier B.V. All rights reserved.