Dynactin-1 mediates rescue of impaired axonal transport due to reduced mitochondrial bioenergetics in amyotrophic lateral sclerosis motor neurons

Brain Commun. 2024 Oct 5;6(5):fcae350. doi: 10.1093/braincomms/fcae350. eCollection 2024.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. A key pathological signature of ALS is the cytoplasmic mislocalization and aggregation of TDP-43 in affected motor neurons, which is found in 97% of cases. Recent reports have shown that mitochondrial dysfunction plays a significant role in motor neuron degeneration in ALS, and TDP-43 modulates several mitochondrial transcripts. In this study, we used induced pluripotent stem cell-derived motor neurons from ALS patients with TDP-43 mutations and a transgenic TDP-43M337V mouse model to determine how TDP-43 mutations alter mitochondrial function and axonal transport. We detected significantly reduced mitochondrial respiration and ATP production in patient induced pluripotent stem cell-derived motor neurons, linked to an interaction between TDP-43M337V with ATPB and COX5A. A downstream reduction in speed of retrograde axonal transport in patient induced pluripotent stem cell-derived motor neurons was detected, which correlated with downregulation of the motor protein complex, DCTN1/dynein. Overexpression of DCTN1 in patient induced pluripotent stem cell-derived motor neurons significantly increased the percentage of retrograde travelling mitochondria and reduced the percentage of stationary mitochondria. This study shows that ALS induced pluripotent stem cell-derived motor neurons with mutations in TDP-43 have deficiencies in essential mitochondrial functions with downstream effects on retrograde axonal transport, which can be partially rescued by DCTN1 overexpression.

Keywords: amyotrophic lateral sclerosis; axonal transport; induced pluripotent stem cells; mitochondrial dysfunction; motor proteins.