Study objectives: The diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome (CFS) is based on a constellation of symptoms which center around fatigue. However, fatigue is commonly reported in the general population by people without CFS. Does the biology underlying fatigue in patients with CFS also drive fatigue experienced by individuals without CFS?
Methods: We used UK Biobank actigraphy data to characterize differences in physical activity patterns and daily temperature rhythms between participants diagnosed with CFS compared to controls. We then tested if single nucleotide variants (SNVs) previously associated with CFS are also associated with the variation of these actigraphic CFS correlates and/or subjective fatigue symptoms in the general population.
Results: Participants diagnosed with CFS (n = 295) had significantly decreased overall movement (Cohen's d = 0.220, 95% CI of -0.335 to -0.106, p-value = 2.42x10-15), lower activity amplitudes (Cohen's d = -0.377, 95% CI of -0.492 to -0.262, p-value = 1.74x10-6), and lower wrist temperature amplitudes (Cohen's d = -0.173, 95% CI of -0.288 -0.059, p-value = 0.002) compared to controls (n = 63,133). Of 30 tested SNVs associated in the literature with CFS, one was associated in the control population with subjective fatigue and one with actigraphic measurements (FDR < 0.05).
Conclusions: The genetic overlap of CFS risk with actigraphy and subjective fatigue phenotypes suggests that some biological mechanisms underlying pathologic fatigue in CFS patients also underlie fatigue symptoms at a broader population level. Therefore, understanding the biology of fatigue in general may inform our understanding of CFS pathophysiology.
Keywords: SNVs; UK Biobank; actigraphy; dysautonomia; fatigue; myalgic encephalomyelitis/chronic fatigue syndrome.
© The Author(s) 2024. Published by Oxford University Press on behalf of Sleep Research Society. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].