Machine learning-based discrimination of benign and malignant breast lesions on US: The contribution of shear-wave elastography

Eur J Radiol. 2024 Oct 18:181:111795. doi: 10.1016/j.ejrad.2024.111795. Online ahead of print.

Abstract

Purpose: To build and validate a combined radiomics and machine learning (ML) approach using B-mode US and SWE images to differentiate benign from malignant solid breast lesions (BLs) and compare its performance with that of an expert radiologist.

Methods: Patients with at least one BI-RADS 2-6 BL who performed breast US integrated with SWE were retrospectively included. B-mode US and SWE images were manually segmented to extract radiomics features. A multi-step feature selection process was performed and a predictive model built using the Logistic Regression algorithm. The diagnostic accuracy was evaluated with the AUC and Matthews Correlation Coefficient (MCC) metrics. The performance of the ML classifier was compared to that of an expert radiologist.

Results: 427 Bls were included and divided into a training (286 BLs, of which 127 benign and 159 malignant) and a test set (141 BLs, of which 59 benign and 82 malignant). Of 1098 features extracted from B-mode US and SWE images, 13 were finally selected. The ML classifier showed an AUC of 0.768 and 0.746, and an MCC of 0.403 and 0.423 in the training and test sets, respectively. The performance was higher than that of the expert radiologist assessing only B-mode US images, but significantly lower when SWE images were also provided.

Conclusion: A ML approach based on B-mode US and SWE images may represent a potential tool in the characterization of BLs. SWE still gives its most relevant contribution in the clinical setting rather than included in a radiomics pipeline.

Keywords: Artificial intelligence; Breast cancer; Radiomics; Ultrasound.