Ecological functions of coastal wetlands are closely linked to microbiome that is affected by anthropogenic pollution, but related systematic research is rare. This study explored microbial community and physicochemical characteristics of sediments in three habitats, mudflat, mangrove and inter-tidal shrimp ponds (gei wai), in a Ramsar using 16S amplicon sequencing. Proteobacteria was the most abundant and Vibrio was detected in all habitats. Microbial diversity in mangrove is higher than mudflat, with gei wai in between. Microbial functions predicted by PICRUSt revealed prevalence of carbohydrate and amino acid metabolism, with enrichment of nitrogen metabolism in mangrove habitat. Gene annotation identified approximately 800 intrinsic antibiotic resistance genes (iARGs) and dominant mechanism was antibiotic inactivation. Variation partitioning analysis indicated sediment characteristics together with antibiotics and heavy metals shaped microbiomes and iARGs composition in sediments. This study offers insights into variations of sediment microbial diversity, function and iARGs among different habitats in protected wetlands.
Keywords: Anthropogenic pollution; Coastal wetland; Microbial function; Proteobacteria; Sediment microbiome.
Copyright © 2024 Elsevier Ltd. All rights reserved.