Dehydrin Client Proteins Identified Using Phage Display Affinity Selected Libraries Processed With Paired-End Phage Sequencing

Mol Cell Proteomics. 2024 Dec;23(12):100867. doi: 10.1016/j.mcpro.2024.100867. Epub 2024 Oct 21.

Abstract

The late embryogenesis abundant proteins (LEAPs) are a class of noncatalytic, intrinsically disordered proteins with a malleable structure. Some LEAPs exhibit a protein and/or membrane binding capacity and LEAP binding to various targets has been positively correlated with abiotic stress tolerance. Regarding the LEAPs' presumptive role in protein protection, identifying client proteins (CtPs) to which LEAPs bind is one practicable means of revealing the mechanism by which they exert their function. To this end, we used phage display affinity selection to screen libraries derived from Arabidopsis thaliana seed mRNA with recombinant orthologous LEAPs from Arabidopsis and soybean (Glycine max). Subsequent high-throughput sequencing of DNA from affinity-purified phage was performed to characterize the entire subpopulation of phage retained by each LEAP ortholog. This entailed cataloging in-frame fusions, elimination of false positives, and aligning the hits on the CtP scaffold to reveal domains of respective CtPs that bound to orthologous LEAPs. This approach (paired-end phage sequencing) revealed a subpopulation of the proteome constituting the CtP repertoire in common between the two dehydrin orthologs (LEA14 and GmPm12) compared to bovine serum albumin (unrelated binding control). The veracity of LEAP:CtP binding for one of the CtPs (LEA14 and GmPM12 self-association) was independently assessed using temperature-related intensity change analysis. Moreover, LEAP:CtP interactions for four other CtPs were confirmed in planta using bimolecular fluorescence complementation assays. The results provide insights into the involvement of the dehydrin Y-segments and K-domains in protein binding.

Keywords: client proteins; late embryogenesis abundant proteins; paired-end sequencing; phage display; temperature related intensity change assay.

MeSH terms

  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Glycine max / metabolism
  • Glycine max / virology
  • High-Throughput Nucleotide Sequencing
  • Peptide Library*
  • Plant Proteins* / genetics
  • Plant Proteins* / metabolism
  • Protein Binding

Substances

  • Peptide Library
  • Plant Proteins
  • dehydrin proteins, plant
  • Arabidopsis Proteins