Chromatin remodelling drives immune cell-fibroblast communication in heart failure

Nature. 2024 Nov;635(8038):434-443. doi: 10.1038/s41586-024-08085-6. Epub 2024 Oct 23.

Abstract

Chronic inflammation and tissue fibrosis are common responses that worsen organ function, yet the molecular mechanisms governing their cross-talk are poorly understood. In diseased organs, stress-induced gene expression changes fuel maladaptive cell state transitions1 and pathological interaction between cellular compartments. Although chronic fibroblast activation worsens dysfunction in the lungs, liver, kidneys and heart, and exacerbates many cancers2, the stress-sensing mechanisms initiating transcriptional activation of fibroblasts are poorly understood. Here we show that conditional deletion of the transcriptional co-activator Brd4 in infiltrating Cx3cr1+ macrophages ameliorates heart failure in mice and significantly reduces fibroblast activation. Analysis of single-cell chromatin accessibility and BRD4 occupancy in vivo in Cx3cr1+ cells identified a large enhancer proximal to interleukin-1β (IL-1β, encoded by Il1b), and a series of CRISPR-based deletions revealed the precise stress-dependent regulatory element that controls Il1b expression. Secreted IL-1β activated a fibroblast RELA-dependent (also known as p65) enhancer near the transcription factor MEOX1, resulting in a profibrotic response in human cardiac fibroblasts. In vivo, antibody-mediated IL-1β neutralization improved cardiac function and tissue fibrosis in heart failure. Systemic IL-1β inhibition or targeted Il1b deletion in Cx3cr1+ cells prevented stress-induced Meox1 expression and fibroblast activation. The elucidation of BRD4-dependent cross-talk between a specific immune cell subset and fibroblasts through IL-1β reveals how inflammation drives profibrotic cell states and supports strategies that modulate this process in heart disease and other chronic inflammatory disorders featuring tissue remodelling.

MeSH terms

  • Animals
  • Bromodomain Containing Proteins / metabolism
  • CX3C Chemokine Receptor 1 / genetics
  • CX3C Chemokine Receptor 1 / metabolism
  • Cell Communication*
  • Cell Cycle Proteins / metabolism
  • Chromatin Assembly and Disassembly*
  • Chromatin* / genetics
  • Chromatin* / metabolism
  • Enhancer Elements, Genetic / genetics
  • Female
  • Fibroblasts* / metabolism
  • Fibrosis
  • Heart Failure* / genetics
  • Heart Failure* / immunology
  • Heart Failure* / metabolism
  • Heart Failure* / pathology
  • Homeodomain Proteins / metabolism
  • Humans
  • Interleukin-1beta / metabolism
  • Macrophages / immunology
  • Macrophages / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Nuclear Proteins / metabolism
  • Single-Cell Analysis
  • Transcription Factor RelA / metabolism

Substances

  • BRD4 protein, human
  • Brd4 protein, mouse
  • CX3C Chemokine Receptor 1
  • Cx3cr1 protein, mouse
  • IL1B protein, human
  • IL1B protein, mouse
  • Interleukin-1beta
  • MEOX1 protein, human
  • Meox1 protein, mouse
  • Nuclear Proteins
  • RELA protein, human
  • Rela protein, mouse
  • Transcription Factor RelA
  • Chromatin
  • Homeodomain Proteins
  • Cell Cycle Proteins
  • Bromodomain Containing Proteins