Objectives: Clinicians can rapidly and accurately diagnose disease, learn from experience, and explain their reasoning. Computational Bayesian medical decision-making might replicate this expertise. This paper assesses a computer system for diagnosing cardiac chest pain in the emergency department (ED) that decides whether to admit or discharge a patient.
Methods: The system can learn likelihood functions by counting data frequency. The computer compares patient and disease data profiles using likelihood. It calculates a Bayesian probabilistic diagnosis and explains its reasoning. A utility function applies the probabilistic diagnosis to produce a numerical BAYES score for making a medical decision.
Results: We conducted a pilot study to assess BAYES efficacy in ED chest pain patient disposition. Binary BAYES decisions eliminated patient observation. We compared BAYES to the HEART score. On 100 patients, BAYES reduced HEART's false positive rate 18-fold from 58.7 to 3.3 %, and improved ROC AUC accuracy from 0.928 to 1.0.
Conclusions: The pilot study results were encouraging. The data-driven BAYES score approach could learn from frequency counting, make fast and accurate decisions, and explain its reasoning. The computer replicated these aspects of diagnostic expertise. More research is needed to reproduce and extend these finding to larger diverse patient populations.
Keywords: chest pain; decision making; emergency medicine; machine learning; probabilistic diagnosis.
© 2024 the author(s), published by De Gruyter, Berlin/Boston.