Competition over resources is often decided via aggressive interactions, which may or may not escalate to all-out fights. Weapons and body size play important roles in such interactions, as they often provide reliable cues of an individual's fighting ability. In contrast, traits like nonfunctional display "weapons" may dishonestly exaggerate fighting ability in order to intimidate opponents into retreating. Signals used in the context of aggressive interactions potentially evolve via very different mechanisms than courtship signals, but have received far less theoretical attention. Here, we contrast the evolution of honest and dishonest signals of fighting ability using a game-theoretic model. Contests are assumed to consist of three discrete stages: display from a distance, low-intensity physical contact, and fighting. At each stage, contestants evaluate the fighting ability of their opponents in comparison to their own based on body size and an aggressive signal. After making this evaluation, contestants decide whether to escalate the interaction or cede to their opponent. Our model predicts that both honest and dishonest aggressive signals can exaggerate far beyond their ecological optima, but that exaggeration is more pronounced for honest signals. Equilibrium levels of aggressiveness-as measured by individuals' propensity to escalate aggressive interactions to the next stage-are independent of the honesty of signals. We additionally develop a novel approach, based on causal inference theory, to understand how changes in underlying parameters shape the coevolution of multiple traits. We use this approach to study how aggression coevolves with body and signal size in response to changes in the cost of losing a fight.
Keywords: adaptive dynamics; causal inference; competition; sexual selection; signaling.
© The Author(s) 2024. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE) and European Society for Evolutionary Biology (ESEN).