Ultrathin Copper Monosulfide Films for an Optically Semitransparent, Highly Selective Ammonia Chemosensor

ACS Appl Mater Interfaces. 2024 Oct 24. doi: 10.1021/acsami.4c13200. Online ahead of print.

Abstract

Transition-metal sulfides are emerging as promising materials for chemiresistive gas sensors─a field still dominated by semiconducting metal oxides. Despite the availability of materials with tunable electronic, optical, physical, and chemical properties, few studies have moved beyond synthesis to provide strategies for enhancing gas sensing performance through material modification. Here, we present a simple, scalable synthetic strategy for developing an optically semitransparent, flexible NH3 gas sensor with a highly uniform, ultrathin CuS (covellite) active sensing layer. The optical and chemical properties of the CuS were precisely controlled near the percolation threshold of thin-film formation by varying key experimental parameters such as the Cu film thickness (<10 nm) and the sulfurization time (∼90 s) under ambient conditions. Experimental and computational studies of CuS and its NH3 sensing characteristics identify key physicochemical properties. The controlled surface chemistry and morphology of the ultrathin CuS layer demonstrate its effectiveness in functional NH3 sensing devices, which achieve a calculated detection limit of 1.38 ppm for NH3 gas at 150 °C, along with exceptional mechanical robustness and optical semitransparency in the visible-light spectrum.

Keywords: ammonia gas; copper sulfide; gas sensor; semitransparency; sulfurization.