Assessment of natural radioactivity levels in rice samples and their implications for radiological protection

Isotopes Environ Health Stud. 2024 Oct 24:1-13. doi: 10.1080/10256016.2024.2412707. Online ahead of print.

Abstract

This study investigates the levels of natural and artificial radioactivity in rice samples collected from various local markets in Islamabad, Pakistan. The 226Ra, 232Th, and 40K activity concentrations were measured through gamma-ray spectrometry with a NaI(Tl) detector. The average activity concentrations were 1.67 ± 1.19 Bq kg-1 for 226Ra, 3.31 ± 1.83 Bq kg-1 for 232Th, and 88.51 ± 11.65 Bq kg-1 for 40K. Calculated radium equivalent (Raeq) values ranged from 7.35 to 18.08 Bq kg-1, with a mean value of 11.11 Bq kg-1, all below the permissible maximum of 370 Bq kg-1. The absorbed dose rates ranged from 6.85 to 16.39 nGy h-1, with an average of 10.64 nGy h-1, falling below the acceptable limit of 51 nGy h-1. The outdoor and indoor radiation hazard indices (Hex and Hin) had mean values of 0.03, both below the threshold value of one. The external and internal hazard indices (Iγ and Iα) were both 0.088, also below the critical value of one. The excess lifetime cancer risk (ELCR) ranged from 0.28 to 0.11, with a mean value of 0.18, which is less than the critical value of one. Overall, the radioactivity levels in the analyzed rice samples are within the acceptable limits set by the International Commission on Radiological Protection and are below global averages. These results offer important insights into the radiological safety of rice consumption in the study area.

Keywords: Absorbed dose rate; Pearson correlation; excess lifetime cancer risk; food safety; gamma spectroscopy; natural radioactivity; radiation hazard indices; radiological safety.