Nanotechnology and CRISPR/Cas-Mediated Gene Therapy Strategies: Potential Role for Treating Genetic Disorders

Mol Biotechnol. 2024 Oct 24. doi: 10.1007/s12033-024-01301-8. Online ahead of print.

Abstract

Gene therapy has made substantial progress in the treatment of the genetic diseases, focussing on the reduction of characteristics of recessive/dominant disorders, as well as various cancers. Extensive research has been conducted in the past few decades to investigate the application of nanotechnology and CRISPR/Cas technology in gene therapy. Nanotechnology due to attributes such has targeted drug delivery, controlled release, scalability and low toxicity has gained attention of the medical world. CRISPR/Cas9 system is considered as an impactful genome editing tool in the area of next-generation therapeutics and molecular diagnostics. CRISPR technology emphasises on gene editing, gene regulation modulation, and formulation of defined genetic changes. Its applications in treatment of the genetic disorders are extended beyond traditional therapies. These techniques are being explored as treatment of several genetic disorders including Duchenne muscular dystrophy, cystic fibrosis, Alzheimer's disease, Parkinson's disease, and Huntington disease. Despite considerable therapeutic potential of gene therapy, several obstacles must be addressed before it can be widely adopted in clinical practice, particularly in terms of ensuring safety and effectiveness. As research advances in this captivating field, these therapies will become the primary treatments and will have significant beneficial effects on the lives of patients with genetic disorders.

Keywords: CRISPR/Cas; Drug delivery systems; Gene therapy; Genetic disorders; Nanotechnology; Non-viral delivery.

Publication types

  • Review