Measurement error and information bias are ubiquitous in epidemiology, yet directed acyclic graphs (DAGs) are infrequently used to represent them, in contrast with confounding and selection bias. This represents a missed opportunity to leverage the full utility of DAGs to depict associations between the variables we actually analyse in practice: empirically measured variables, which are necessarily measured with error. In this article, we focus on applying causal diagrams to depict the data-generating mechanisms that give rise to the data we analyse, including measurement error. We begin by considering empirical data considerations using a general example, and then build up to a specific worked example from the clinical epidemiology of hearing health. Throughout, our goal is to highlight both the challenges and the benefits of using DAGs to depict measurement error. In addition to the application of DAGs to conceptual causal questions (which pertain to unmeasured constructs free from measurement error), which is common, we highlight the advantages associated with applying DAGs to also include empirically measured variables and-potentially-information bias. We also highlight the implications implied by this use of DAGs, particularly regarding the unblocked backdoor path causal structure. Ultimately, we seek to help increase the clarity with which epidemiologists can map traditional epidemiological concepts (such as information bias and confounding) onto causal graphical structures.
Keywords: Measurement error; directed acyclic graphs; information bias; unblocked backdoor paths.
© The Author(s) 2024; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.