The Influence of Kinematics on Tennis Serve Speed: An In-Depth Analysis Using Xsens MVN Biomech Link Technology

Bioengineering (Basel). 2024 Sep 27;11(10):971. doi: 10.3390/bioengineering11100971.

Abstract

An inertial measurement system, using a combination of accelerometers, gyroscopes and magnetometers, is of great interest to capture tennis movements. We have assessed the key biomechanical moments of the serve phases and events, as well as the kinematic metrics during the serve, to analyze their influence on serve speed. Eighteen male competitive tennis players, equipped with the inertial measurement units, performed a prolonged serve game consisting of 12 simulated points. Participants were divided into groups A and B in accordance with their positioning above or below the sample average serve speed. Group A (compared with their counterparts) presented with lower back hip adduction and knee flexion, and a higher leftward thoracic tilt during the impact event (-14.9 ± 6.9 vs. 13.8 ± 6.4, 2.8 ± 5.9 vs. 14.3 ± 13.0 and -28.9 ± 6.3 vs. 28.0 ± 7.3°). In addition, group A exhibited higher maximal angular velocities in the wrist and thorax, as well as a lower maximal angular velocity in the back hip than group B (427.0 ± 99.8 vs. 205.4 ± 9.7, 162.4 ± 81.7 vs. 193.5 ± 43.8, 205.4 ± 9.7 vs. 308.3 ± 111.7, 193.5 ± 43.8 vs. 81.1 ± 49.7°/s). The relevant biomechanical differences during the serve were identified, highlighting the changes in joint angles and angular velocities between the groups, providing meaningful information for coaches and players to improve their serve proficiency.

Keywords: 3D motion analysis; inertial measurement system; kinematic analysis; serve biomechanics.