Mesenchymal stem cells (MSCs) hold immense therapeutic potential due to their regenerative and immunomodulatory properties. However, to utilize this potential, it is crucial to optimize their in vitro cultivation conditions. Three-dimensional (3D) culture methods using cell-laden hydrogels aim to mimic the physiological microenvironment in vitro, thus preserving MSC biological functionalities. Cellulosic hydrogels are particularly promising due to their biocompatibility, sustainability, and tunability in terms of chemical, morphological, and mechanical properties. This study investigated the impact of (1) two physical crosslinking scenarios for hydrogels derived from anionic cellulose nanofibers (to-CNF) used to encapsulate adipose-derived MSCs (adMSCs) and (2) physiological culture conditions on the in vitro proliferation, differentiation, and extracellular vesicle (EV) production of these adMSCs. The results revealed that additional Ca2+-mediated crosslinking, intended to complement the self-assembly and gelation of aqueous to-CNF in the adMSC cultivation medium, adversely affected both the mechanical properties of the hydrogel spheres and the growth of the encapsulated cells. However, cultivation under dynamic and hypoxic conditions significantly improved the proliferation and differentiation of the encapsulated adMSCs. Furthermore, it was demonstrated that the adMSCs in the CNF hydrogel spheres exhibited potential for scalable EV production with potent immunosuppressive capacities in a bioreactor system. These findings underscore the importance of physiological culture conditions and the suitability of cellulosic materials for enhancing the therapeutic potential of MSCs. Overall, this study provides valuable insights for optimizing the in vitro cultivation of MSCs for various applications, including tissue engineering, drug testing, and EV-based therapies.
Keywords: cellulose; extracellular vesicles; hydrogels; hypoxia; immunomodulation; mesenchymal stem cells.