Athletes with heart disease are at increased risk of malignant ventricular arrhythmias and sudden cardiac death compared to their sedentary counterparts. When athletes have symptoms or abnormal findings at preparticipation screenings, a precise diagnosis by differentiating physiological features of the athlete's heart from pathological signs of cardiac disease is as important as it is challenging. While traditional imaging methods such as echocardiography, cardiac magnetic resonance, and computed tomography are commonly employed, nuclear medicine offers unique advantages, especially in scenarios requiring stress-based functional evaluation. This article reviews the use of nuclear medicine techniques in the diagnostic work-up of athletes with suspected cardiac diseases by highlighting their ability to investigate myocardial perfusion, metabolism, and innervation. The article discusses the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET) using radiotracers such as [99mTc]MIBI, [99mTc]HDP, [18F]FDG, and [123I]MIBG. Several clinical scenarios are explored, including athletes with coronary atherosclerosis, congenital coronary anomalies, ventricular arrhythmias, and non-ischemic myocardial scars. Radiation concerns are addressed, highlighting that modern SPECT and PET equipment significantly reduces radiation doses, making these techniques safer for young athletes. We conclude that, despite being underutilized, nuclear medicine provides unique opportunities for accurate diagnosis and effective management of cardiac diseases in athletes.
Keywords: arrhythmogenic cardiomyopathy; congenital coronary anomalies; coronary artery disease; myocardial bridging; sports cardiology; sudden cardiac death; ventricular arrhythmias.