Compared with evergreens, deciduous tree species usually have higher photosynthetic efficiency to complete vegetative and reproductive growth in a shorter growing season. However, the nutrient basis for the differentiation of photosynthesis functional traits between evergreen and deciduous tree species has not yet been clarified. Thirty evergreen and 20 deciduous angiosperm tree species from a subtropical common garden were compared in terms of photosynthetic traits and leaf nutrients. Generally, their differences in area-based photosynthetic capacity were uncorrelated with area-based leaf nutrient content but were caused by the fraction of nitrogen allocated to photosynthetic components. By comparison, the differences in mass-based photosynthetic capacity were more correlated with leaf nitrogen content than leaf phosphorus and potassium content. Convergence in phosphorus and potassium constraints to photosynthesis occurred in deciduous tree species but not in evergreen tree species. Furthermore, leaf C/N ratio played a more significant role than leaf mass per area in determining the differentiation of photosynthetic traits between evergreen and deciduous groups. Our findings provide insight into the nutrient basis for photosynthetic carbon gain and functional strategies across tree species.
© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].