Tree plantations worldwide are a large terrestrial carbon sink. Previous studies on the carbon sequestration capacity of plantations mainly focused on tree biomass carbon sequestration, but the importance of soil organic carbon (SOC) was relatively unclear. Living root carbon inputs influence SOC via plant-microbe interactions in the rhizosphere and play an essential role in nutrient cycling. Here, we compared SOC, including its fractions, microbial properties, and major nutrients in rhizosphere and bulk soils, and examined their relationships to net primary productivity (NPP) across three developmental stages of Chinese fir (Cunninghamia lanceolata) plantations (6, 18, and 42 years old) in subtropical China. Although NPP differed among the three plantations, SOC concentration in bulk soils did not vary significantly among them. However, SOC concentration and labile C pool I and recalcitrant C pool in rhizosphere soils were significantly (p < 0.05) higher in the young (6-year) and mature (42-year) plantations, both of which had lower (p < 0.05) NPP (-37.71 % and - 42.67 %) compared to the middle-aged (18-year) plantation, suggesting a decoupling of NPP from rhizosphere SOC in the plantations. The decoupling of NPP from rhizosphere SOC concentrations may be driven by nitrogen (N) and phosphorus (P) tree growth requirements, belowground C allocation, and resultant microbial activity in this highly weathered subtropical soil. Our study provides field-based evidence suggesting that rhizosphere SOC changes are primarily regulated by net primary production in subtropical forest plantations. We propose that accurate predictions of SOC dynamics in forest plantations require an improved understanding of rhizosphere processes during plantation development.
Keywords: Forest age; Forest productivity; Rhizosphere; Soil organic carbon; Subtropics.
Copyright © 2024 Elsevier B.V. All rights reserved.