The meticulous regulation of intracellular pH (pHi) is crucial for maintaining cellular function and homeostasis, impacting physiological processes such as heart rhythm, cell migration, proliferation, and differentiation. Dysregulation of pHi is implicated in various pathologies such as arrhythmias, cancer, and neurodegenerative diseases. Here, we explore the role of STIM1, an ER calcium (Ca2+) sensor mediating Store Operated Ca2+ Entry (SOCE), in sensing pHi changes. Our study reveals that STIM1 functions as a sensor for pHi changes, independent of its Ca2+-binding state. Through comprehensive experimental approaches including confocal microscopy, FRET-based sensors, and mutagenesis, we demonstrate that changes in pHi induce conformational alterations in STIM1, thereby modifying its subcellular localization and activity. We identify two conserved histidine within STIM1 essential for sensing pHi shifts. Moreover, intracellular alkalization induced by agents such as Angiotensin II or NH4Cl enhances STIM1-mediated SOCE, promoting cardiac hypertrophy. These findings reveal a novel facet of STIM1 as a multi-modal stress sensor that coordinates cellular responses to both Ca2+ and pH fluctuations. This dual functionality underscores its potential as a therapeutic target for diseases associated with pH and Ca2+ dysregulation.
Keywords: FRET imaging; SOCE; STIM1; calcium signaling; cardiac hypertrophy; intracellular pH (pH(i)).
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.