This study aimed to determine the effectiveness of different green extraction techniques (GETs) on targeted bioactive compounds from artichoke leaf by-products using deep eutectic solvent extraction (DESE), supercritical CO2 extraction (SCO2E), subcritical water extraction (SWE), and ultrasound-assisted extraction (UAE). Moreover, (HR) LC-ESI-QTOF MS/MS and HPLC-PDA analyses were used to perform qualitative-quantitative analysis on the extracts, enabling the detection of several bioactive compounds, including luteolin, luteolin 7-O-glucoside, luteolin 7-O-rutinoside, apigenin rutinoside, chlorogenic acid, and cynaropicrin as the most representative ones. SWE showed better results than the other GETs (TPC: 23.39 ± 1.87 mg/g of dry plant, dp) and appeared to be the best choice. Regarding UAE, the highest total phenols content (TPC) was obtained with 50:50% v/v ethanol: water (7.22 ± 0.58 mg/g dp). The DES obtained with choline chloride:levulinic acid showed the highest TPC (9.69 ± 0.87 mg/g dp). Meanwhile, SCO2E was a selective technique for the recovery of cynaropicrin (48.33 ± 2.42 mg/g dp). Furthermore, the study examined the antioxidant activity (1.10-8.82 mmol Fe2+/g dp and 3.37-31.12 mmol TEAC/g dp for DPPH• and FRAP, respectively) and total phenols content via Folin-Ciocalteu's assay (198.32-1433.32 mg GAE/g dp), of which the highest values were detected in the SWE extracts. The relationship among the GETs, antioxidant assays, and compounds detected was evaluated using Principal Component Analysis (PCA). PCA confirmed the strong antioxidant activity of SWE and showed comparable extraction yields for the antioxidant compounds between UAE and DESE. Consequently, GETs selection and extraction parameters optimization can be employed to enrich artichoke leaf by-products' extracts with targeted bioactive compounds.
Keywords: HPLC-PDA; LC–MS/MS; antioxidant activity; artichoke; by-products; cynaropicrin; green extraction; leaves.